International Journal of Management, IT & Engineering Vol. 8 Issue 10, October 2018, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: <u>http://www.ijmra.us</u>, Email: editorijmie@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

MCB-DEA: A MODIFIED APPROACH FOR BENCHMARKING

Reshampal Kaur¹

Dr. H.S. Bhatti²

Dr. Monika Aggarwal³

Abstract:Review of existing literature on the study suggests that though non-parametric technique Data envelopment analysis (DEA) can be used to arrive at benchmarks but it has its own limitations, like non-inherent benchmarks, more than one benchmark and different benchmarks for each year, which makes it difficult for an inefficient bank to decide that which benchmark should be followed for feasible improvement. Thus, there is a need to identify a new method which can help in ascertaining benchmarks based on multi period analysis for improving efficiency. The present study endeavours to propose a model which has been named as MCB-DEA model. The same has been illustrated using a data base of sixteen years for twenty five public sector banks operating in India. It was found that the suggested model helps in identifying nearest benchmark, falling in same cluster so as to gradually improve efficiency.

Keywords:Efficiency, Data envelopment analysis, Malmquist TFP Index, Benchmarking, Cluster analysis.

¹ Research Scholar, Panjab Technical University, Jalandhar, India,

² HOD & Professor, BBSB Engineering College, Fatehgarh Sahib, India

³ Associate Professor, UIAMS, Panjab University, Chandigarh, India, Postal

I. Introduction and Review of Literature

For every DMU to be a quality DMU and to achieve next level of efficiency, benchmarking is required. To benchmark is to compare performance against a standard [1] with the objective to improve performance [2]. It is based on the premise that "why reinvent the wheel when I can learn from someone who has already done it?" [3].Benchmarking which is also known as process benchmarking, internal benchmarking and industry benchmarking [4] is a technique that initially got popular in Japan but considering its huge potential [5] in large firms to small businesses and public as well as semi-public sector [5,6,7,8,9] it gained popularity worldwide [10].

benchmarking Particularly for in banking sector, DEA has been widely used[11,12,13,14,15,16,17,18,19,20]but it has some limitations too. The benchmarks provided by DEA for inefficient DMUs are sometimes largely different in performance behaviour[21], which provides the target performance way too difficult to achieve. Secondly, presence of more than one benchmark creates confusion regarding choice of optimum DMU to be followed. Literature also advocates the use of Malmquist TFP index on DEA results to analyse changes in the efficiency levels in a multi-period environment [22,23,24,25,26,27,28,29,30] but it does not provide any information on benchmarks.Some researchers have also used cluster analysis in combination with DEA to explore relationships between data points in a single time period [10,31,32,33,34].

As evident, studies have made an attempt to calculate benchmarks based on DEA but none of these have used clusters on Malmquist TFP analysis to arrive at benchmarks considering multi period data. Hence the present study proposes to add value to existing literature by proposing a new Malmquist clusteringbenchmarking model based on DEA (MCB DEA) to calculate benchmarks using cluster analysis with DEA based Malmquist TFP index. This paper proposes MCB-DEA model and tests the same on 25 public sector banks operating in India considering temporal data from the year 1998 to the year 2013.

II. Model Formulation

The proposed MCB DEA model has three steps. In the first step, **Charnes, Cooper and Rhodes** (**CCR**) model of DEA is used for efficiency evaluation of each DMU, for each time period, separately.

Following [35], Consider DMU_j , (j=1,2,...., n) using input vector $X_j = (x_{1j}, x_{2j},, x_{mj})$ to produce output vector

 $Y_j = (y_{1j}, y_{2j}, \dots, y_{sj}) \text{ for } X_j \ge 0, Y_j \ge 0$

For input weights vector $V = (v_1, v_2, ..., v_m)$ and output weights vector $U = (u_1, u_2, ..., u_s)$ each DMU_k has an optimization problem

$$\begin{array}{l} \text{Maximize } \theta = \ u_1 y_{1k} + u_2 y_{2k} + \dots + u_s y_{sk} \\ \text{s.t.} \quad v_1 x_{1k} + v_2 x_{2k} + \dots + v_m x_{mk} = 1 \\ u_1 y_{1j} + \ u_2 y_{2j} + \dots + u_s y_{sj} \leq v_1 x_{1j} + v_2 x_{2j} + \dots + v_m x_{mj} \ \text{ for all } j = 1,2, \\ v_1, v_2, \dots, v_m \geq 0; \ u_1, u_2, \dots, u_s \geq 0....(*) \end{array}$$

Corresponding to k = 1, 2, ..., n (*) gives a set of 'n' optimization problems. Each problem is then solved for obtaining values of most favourable input weights $v_1, v_2, ..., v_m$ and output weights $u_1, u_2, ..., u_s$ for each corresponding DMU.

In **Step** (2)of the proposed MCB DEA model, change in efficiency behaviour of each DMU, is analysed over the entire time period, in a multi-period environment, by applying Malmquist TFP index, on the efficiency scores given by DEA for each time period, in Step (1).

The Malmquist TFP index, which measures the change in productivity of a DMU, between two data periods t_1 and t_2 , by calculating the ratio of the distances of each data point relative to a common technology.Following [36], for a firm, at time t_1 , S_{t_1} be the production set, then an output distance function is defined as

$$D^{t_1}(x^{t_1}, y^{t_1}) = \inf\{ \theta \in \mathbb{R} | \left(x^{t_1}, \frac{y^{t_1}}{\theta} \right) \in S_{t_1} \} \dots \dots (1)$$

where, $D^{t_1}(x^{t_1}, y^{t_1}) \leq 1$; with $D^{t_1}(x^{t_1}, y^{t_1}) = 1$ iff DMU is efficient and

further increase in output y^t with same input x^t isnot possible

Also, $D^{t_2}(x^{t_2}, y^{t_2}) = \inf\{ \theta \in \mathbb{R} | \left(x^{t_2}, \frac{y^{t_2}}{\theta}\right) \in S_{t_2} \} \dots \dots (3)$

To compute Malmquist productivity index, we define

$$D^{t_1}(x^{t_2}, y^{t_2}) = \inf\{ \theta \in \mathbb{R} | \left(x^{t_2}, \frac{y^{t_2}}{\theta} \right) \in S_{t_1} \} \dots \dots (4)$$

Where $D^{t_1}(x^{t_2}, y^{t_2})$ gives the maximum proportional change in outputs y^{t_2} with same inputs x^{t_2} , at time $t_{1.}$

and
$$D^{t_2}(x^{t_1}, y^{t_1}) = \inf\{ \theta \in \mathbb{R} | \left(x^{t_1}, \frac{y^{t_1}}{\theta}\right) \in S_{t_2} \} \dots \dots (5)$$

..., n.

Where $D^{t_2}(x^{t_1}, y^{t_1})$ gives the maximum proportional change in outputs y^{t_2} with same inputs x^{t_2} , at time t_2 .

[37] had defined Malmquist productivity index with reference to the technology of initial period, t_1 as

Or alternatively, with reference to the technology of final period, t₂ as

To avoid an arbitrary choice of reference technology, [36] defined the Malmquist productivity index of TFP, between periods t_1 and t_2 ; $t_1 < t_2$, as the geometric mean of M^{t_1} and M^{t_2} ,

$$M(x^{t_2}, y^{t_2}, x^{t_1}, y^{t_1}) = \left(\frac{D^{t_1}(x^{t_2}, y^{t_2})}{D^{t_1}(x^{t_1}, y^{t_1})} \frac{D^{t_2}(x^{t_2}, y^{t_2})}{D^{t_2}(x^{t_1}, y^{t_1})}\right)^{\frac{1}{2}}.....(8)$$

Equation (8) can also be written as

$$M(x^{t_2}, y^{t_2}, x^{t_1}, y^{t_1}) = \frac{D^{t_2}(x^{t_2}, y^{t_2})}{D^{t_1}(x^{t_1}, y^{t_1})} \left(\frac{D^{t_1}(x^{t_2}, y^{t_2})}{D^{t_2}(x^{t_2}, y^{t_2})} \frac{D^{t_1}(x^{t_1}, y^{t_1})}{D^{t_2}(x^{t_1}, y^{t_1})} \right)^{\frac{1}{2}} \dots (9)$$

Equation (9) is the decomposition of the Malmquist productivity index into two factors. The first factor outside the bracket represents the efficiency change (or catching-up effect) component and the second factor, with the bracket, represents the technological change (or Innovation). Thus, for constant returns to scale, TFP change = Change in Efficiency × Change in Technology ... (10)

In step (3) of the proposed MCB DEA model, Cluster Analysis is used to divide the DMUs into different clusters, on the basis of their overall Malmquist TFP index and its components found in Step (2). Here Hierarchical clustering is used to find appropriate number of clusters and K-meansclustering is used to find homogeneous clusters. K-means clustering, algorithm is a simple clustering technique [38]. It is considered as a top-rated data mining algorithm for its simplicity and vast application areas [30,39]. In order to perform k-means clustering, the number of clusters 'k' is chosen, means of these clusters (centroid) are computed, the distance of each object to the centroids is determined using some distance measure. Then the objects are grouped based on minimum distance and new cluster seeds are computed. The process is repeated until the centroids no longer change or convergence is reached. The objective function of K-means algorithm is defined as a minimization function:

$$J = \sum_{i=1}^{N} \sum_{j=1}^{C} D(x_i, c_j)$$

Where N is the number of objects, C is the number of clusters and D is the measure of distance between $pointsx_i$ and cluster mean c_i .

III. Data Base

For the testing of the proposed MCB-DEA model, the data related to 25 public sector banks operating in India, for the time period, starting from the year 1998 till 2013, were collected from the Statistical Tables Relating to Banks in India, published by the Reserve Bank of India. The inputs considered for analysis are Owned funds, Deposits, Borrowings and Wage bills. Whereas, outputs have been taken as Spread and Other income. Table 1 gives the list of public sector banks, chosen for study, considered as DMUs. Although there are total 27 public sector banks, operating in India, but for the purpose of uniformity in data, the IDBI Bank and the Bhartiya Mahila Bank were eliminated as these banks were formulated in the year 2011 & 2015 respectively. Few banks had merged in the year 2015 onwards, So the data till 2013 have been considered.Table 2 gives the detailed description of the selected variables and Table 3 gives the descriptive statistics of the data related to these variables.

As per [40], for accuracy in DEA results, the number of DMUs should be greater than three times of total number of input variables and output variables. In present study, there are 400 observations (25 DMUs * 16 years) and the total number of input-output variables is six (4+2). Thus, this study observes well the property of minimal number of DMUs.

IV. Empirical Findings

This section presents the results of various steps of the proposed MCB-DEA model. In first step, a non-parametric, input oriented CCR model of DEA, assuming constant returns to scale is applied, separately for each financial year, on the data collected for the public sector banks under study, with the objective to find comparative efficiency level of each public sector banks in each year. If DEA efficiency score percentage is equal to one hundred then, public sector bank is identified to be efficient for that year andinefficient, if its DEA efficiency percentage is less than hundred.

The results of CCR model of DEA are listed in Table 4, which gives the efficiency level of each bank under study for each year column wise. The result shows that during all these sixteen years under study, out of total 400 observations, 204 are for efficient banks and 196 are for inefficient banks.

In the second step, change in efficiency behaviour of each public sector bank, for each year based on previous year, is analysed by applying Malmquist TFP index, on the year wise efficiency scores given by DEA, in table 4, to further find overall TFP change during the whole sixteen years time period.Table 5 gives the annual average changes of Total Factor Productivity(TFPCH) and its decomposition into efficiency change (ECH) and technical efficiency change (TCH), for each DMU. It is observed that over the entire period of study, out of total 25 PSBs, 20 have shown an increased TFPCH on average annually. Among these 20 banks, 5 banks have shown improvement in ECH and TCH both, although rate of improvement in ECH is far less than improvement in both factors i.e. 1.3 percent.Three banks have shown no improvement in ECH but have considerable rate of improvement. Twelve banks have faced a decline in ECH, but even then, high rate of growth of TCHof these banks has resulted into, growth of TFPCH.

In third step, to assess the cluster tendency of the dataset, Hopkins statisticis computed, on the values of variables TFPCH, ECH and TCH, given by table 5. Value of H in Hopkins test lies between 0 and 0.5; close to zero means data is clusterable and close to 0.5 means non clusterable.For the present data, H = 0.2768939, which indicates that the data is clusterable.Further, to find the appropriate number of clusters in which the public sector banks should be divided into, Hierarchical clustering is performed.Results suggest that taking five number of clusters will be most appropriate. The dendrogram in figure 1 gives the detailed division of objects into five clusters and genealogy of clusters.

For proper grouping of objects into homogeneous clusters, K-means clustering is done for k=5, which gives five clusters C1, C2, C3, C4 and C5 of sizes 1, 12, 3, 4 and 5 objects respectively. Cluster means of these clusters are given in Table 6. Geometrical representation of

partitioning of DMUs in five clusters, byK-means, is given in figure 2. It is evident that DMUs within each cluster form homogenous groups. Mutual distance in position of any two DMUs tells about the extent of similarity in their efficiency behaviour. Information given by figure 2 is summarized in Table 7. Table 7 shows the clusters in first column and the DMUs present in each cluster are given in column two. Third column gives the number of years, out of total 16 years, for each DMU, for which that DMU is found to be efficient in DEA analysis in step 1(Table4, last column).Cluster C2 is the biggest cluster with 12 DMUs. But DMU 2 is the best performer which has been DEA efficient in all 16 years. Thus, for all other DMUs in cluster C2, benchmark is DMU 2. Cluster C3 has DMU 7 as its best performer. So, for DMU 12 and DMU 20, benchmark is DMU 7. Similarly, in Cluster C4, DMU 16 is a benchmark for DMU 9, DMU 22 and DMU 24. Although benchmark DMU 16 itself is not showing a very good performance, but even then, it is important for the DMUs in this cluster to consider it as a benchmark because improvements are possible in a gradual manner by first achieving a feasible target. Likewise, in Cluster C5, benchmark for DMU 3, DMU 6, DMU 10 and DMU 17 have their benchmark as DMU 14. Cluster C1 has only DMU 15, for its benchmark, C1 can be considered as merged into cluster C3, so, DMU 15 should follow DMU 7 as its benchmark.

V. Conclusion

From the existing literature review, it is found that Data envelopment analysis (DEA) has been used extensively for efficiency evaluation and as a benchmarking of DMUs, in a single time period. Studies have also applied Malmquist TFP index on DEA results to analyse changes in the efficiency levels, from time period to the next. But, none of these researches have given benchmarks considering multi period data. Hence the present study proposes to add value to existing literature by proposing a new Malmquist clustering benchmarking model based on DEA (MCB DEA) to calculate benchmarks using cluster analysis with DEA based Malmquist TFP index.

From the foregoing analysis and development of MCB-DEAmodel and further testing the same on 25 public sector banks operating in India, for the time period from the year 1998 to the year 2013, efficiency of each DMU is evaluated by using CCR model of DEA for each year separately. The result shows that during all these sixteen years under study, out of total 400 observations, 204 results in efficiency and 196 observations indicate inefficiency. Then, the change in efficiency behaviour of each DMU, over the entire time period, is analysed using Malmquist TFP index, on the efficiency scores given by DEA. It is observed that over the entire period of study, out of total 25 public sector banks, 20 have shown an increased TFP on average annually and an improvement in technical efficiency is responsible for this increased TFP.Further, on the basis of the overall Malmquist TFP index and its components, technical efficiency change and efficiency change, public sector banks under study are divided into five homogeneous clusters C1, C2, C3, C4 and C5. The best performing public sector bank in cluster C2 is The State Bank of Bikaner and Jaipur, so it is the benchmark for all other banks falling in cluster C2. Similarly, The Allahabad Bank is the benchmark in clusters C1 and C3 merged together, The Indian Bank is the benchmark in cluster C4 and The Corporation Bank is the benchmark in C5. Hence it is concluded that the benchmarks found on the basis of MCB-DEA model are inherently similar to their respective less efficient banks, thus providing more realistic targets to achieve, in order to improve efficiency gradually.

References

[1] Azevedo J.P., Newman J.L. &Pungiluppi J., 2010, Benchmarking: A tool to improve the effectiveness of Monitoring and Evaluation in the policy cycle, <u>www.worldbank.org/enbreve</u>, No. 154.

[2] Scott R., 2010, Benchmarking: A Literature Review, Edith Cowan University resource, https://intranet.ecu.edu.au/__data/assets/pdf_file/0010/357193/Benchmarking-Literature-Review.pdf

[3] Elmuti D. &Kathawala Y., 1997, An overview of benchmarking process: a tool for continuous improvement and competitive advantage, Benchmarking for Quality Management & Technology, Vol. 4, No. 4, 229-243.

[4] Camp R.C., 1989, Benchmarking: The Search for Industry Best Practices That Lead to Superior Performance ASQC Quality Press, Milwaukee, Wisconsin.

[5] Kyro P., 2003, Revising the concept and forms of benchmarking, Benchmarking: An International Journal, Vol. 10, No. 3, 210-225.

[6] Ball A., 2000, Benchmarking in local government under a central government agenda, Benchmarking: An International Journal, Vol. 7 No. 1, 20-34.

[7] Davis P., 1998, The burgeoning of benchmarking in British local government, Benchmarking for Quality Management and Technology, Vol. 5 No. 4, 260-70.

[8] Jones R., 1999, The role of benchmarking within the cultural reform journey of an award winning Australian local authority, Benchmarking: An International Journal, Vol. 6 No. 4, 338-49.

[9] McAdam R. & Kelly M., 2002, A business excellence approach to generic benchmarking in SMEs, Benchmarking: An International Journal, Vol. 9, No. 1, 7-27.

[10] Sarkis J. &Talluri S., 2004, Performance based clustering for benchmarking of US airports, Transportation Research Part A, 38, 329–346.

[11] Akbari A., Dahmardehb N. and Saravani M., 2012, Efficiency Evaluation Bank RefahKargaran Branches in Sistan and Baluchestan Province (S&B, Iran), Using Data Envelopment Analysis, Interdisciplinary Journal of Contemporary Research in Business, Vol 4, NO 1.

[12] Qureshi M.A. and Shaikh M, 2012, Efficiency of Islamic and Conventional Banks in Pakistan: A Non-Parametric Approach, International Journal of Business and Management Vol. 7, No. 7.

[13] Sultan J., Bilal M. And Abbas Z., 2011, Performance measurement by Data Envelopment Analysis (DEA): A study of banking sector in Pakistan, Interdisciplinary Journal of Contemporary Research in Business, Vol 2, No. 12.

[14] AlKhathlan K. and Malik S. A., 2010, Are Saudi Banks Efficient? Evidence Using Data Envelopment Analysis (DEA), International Journal of Economics and Finance Vol. 2, No.2.

[15] Arslan B.G. and Ergec E.H., 2010, The Efficiency of Participation and Conventional Banks in Turkey: Using Data Envelopment Analysis, International Research Journal of Finance and Economics, Issue 57.

[16] Jemric I. and Boris V., 2002, Efficiency of banks in Croatia: a DEA approach, Comparative Economic Studies, InfoTrac Engineering Science & Technology Collection.

[17] Lin Y.H., Hsu G. and Hsiao C., 2007, Measuring efficiency of domestic banks in Taiwan: application of data envelopment analysis and Malmquist index, Applied Economics Letters, 14, 821–827.

[18] Pasiouras F., 2008, International evidence on the impact of regulations and supervision on banks' technical efficiency: an application of two-stage data envelopment analysis, Rev Quant FinanAcc, 30:187–223.

[19] Gitau C. and Gor S., 2011, Measuring Factor Productivity of the Banking sector in Kenya, OIDA International Journal of Sustainable Development, Vol. 2, No. 12, 11-18.

[20] Ganesan N., 2009, Data Envelopment Analysis of State and District Cooperative Banks in India: Exploratory Results, The IUP Journal of Bank Management, Vol. VIII, Nos. 3 & 4.

[21] Doyle J. & Green R., 1994, Efficiency and cross-efficiency in DEA: derivations, meanings and uses. Journal of the Operational Research Society, 45, 567–578.

[22] Pandey P. and Singh S., 2015, Evaluating the Performance of Commercial Banks in India Using Malmquist and DEA Approach: Some Evidence, The IUP Journal of Bank Management, Vol XIV, No. 2.

[23] Casu B., Ferrari A. and Zhao T., 2013, Regulatory Reform and Productivity Change in Indian Banking, The Review of Economics and Statistics, 95(3), 1066–1077.

[24] Raphael G., 2013, A DEA- Based Malmquist Productivity Index approach in assessing performance of commercial banks: Evidence from Tanzania, European Journal of Business and Management, Vol.5, No.6.

[25] Bi G., Ding J. and Luo Y., 2011, A new Malmquist productivity index based on semidiscretionary variables with an application to commercial banks of China, International Journal of Information Technology & Decision Making, Vol. 10, No. 4, 713–730.

[26] Liu C., Chuang L. and Huang C., 2011, A Study of Operating Efficiency of Banks under Financial Holding in Taiwan, International Research Journal of Finance and Economics, Issue 79, 143-155.

[27] Sekhri V., 2011, A DEA and Malmquist Index Approach to Measuring Productivity and Efficiency of Banks in India, The IUP Journal of Bank Management, Vol. X, No. 3.

[28] Pal V. And Bishnoi N.K., 2009, Productivity Analysis of Commercial Banks in India, Decision, Vol. 36, No.1.

[29] Mahesh H P and Rajeev M., 2007, Productivity of Indian Commercial Banks in the Pre- and Post-Liberalization Periods, The Icfai Journal of Bank Management, Vol. VI, No. 4.

[30] Kaur R. & Aggarwal M., (2017), Malmquist Total Factor Productivity Index with an Illustrative Application to Indian Public Sector Banks, International Journal of Applied Business and Economic Research, Volume 15, Number 22 (Part 2), 93-111.

[31] Lemos C.A.A., Lins M.P.E. &Ebecken N.F.F., 2005, DEA implementation and clustering analysis using the K-Means algorithm, WIT Transactions on Information and Communication Technologies, Vol 35, Data Mining VI, pp 321-329.

[32] Nourani M., Chandran V.G.R., Kweh Q.L. & Lu W.M., 2018, Measuring Human, Physical and Structural Capital Efficiency Performance of Insurance Companies, Social Indicators Research, 137, 281–315.

[33] Azadeh A, Asadzadeh S.M. &Tanhaeean M., 2017, A consensus-based AHP for improved assessment of resilience engineering in maintenance organizations, Journal of Loss Prevention in the Process Industries, 47,151-160.

[34] Wang X. & Hu H., 2017, Sustainability in Chinese Higher Educational Institutions' Social Science Research: A Performance Interface toward Efficiency, Sustainability, 9, 1952.

[35] Charnes, A., Cooper W.W., & Rhodes E., 1978, Measuring the efficiency of decision making units, European Journal of Operational Research 2, 429-444.

[36] Fare R., Grosskopf S., Norris M. and Zhang Z, 1994, Productivity growth, technical progress, and efficiency change in industrialized countries, American Economic Review, 84, 66-83.

[37] Caves D. W., Christensen L. R. &Diewert W. E.,1982, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica, vol.50, no.6, 1393-1414.

[38] Naldi, M.C. &Campello, R.J., 2015, Comparison of distributed evolutionary k-means clustering algorithms, Neurocomputing, 163, 78-93.

[39] Kumar V. & Wu X. (Eds.), 2009, The Top Ten Algorithms in Data Mining CRC Press.

[40] Barros, C. P., Gonçalves, O. & Peypoch, N. 2012, French regional public airports technical efficiency, International Journal of Transport Economics, 39(2), 255–274.

Table 1: List of Banks under study				
Name of the Bank	Group			
State Bank of India				
State Bank of Bikaner and				
State Bank of Hyderabad				

State Bank of Mysore	SBI & Associates
State Bank of Patiala	
State Bank of Travancore	
Allahabad Bank	
Andhra Bank	
Bank of Baroda	
Bank of India	
Bank of Maharashtra	
Canara Bank	Other Nationalized
Central Bank of India	
Corporation Bank	Banks
Dena Bank	
Indian Bank	
Indian Overseas Bank	
Oriental Bank of	
Punjab National Bank	
Punjab and Sind Bank	
Syndicate Bank	
UCO Bank	
Union Bank of India	
United Bank of India	
Vijaya Bank	

Table 2: Description of Input and Output Variables						
	Variables	Description				
Input Variables	Owned funds	Sum of Capital and Reserves				
	Deposits	Total deposits				
	Borrowings	Total Borrowings				
	Wage Bills	Salaries to all employees				
Output Variables	Spread	Interest Earned Minus Interest Expended				
	Other Income	Sum of income from Commission,				
		exchange & brokerage etc				

Table 3: Descriptive Statistics of Input & Output Variables							
	Ν	Minimum	Maximum	Mean	Std. Deviation		
Owned Funds	400	2177.0	988837.0	57197.83	98725.56		
Deposits	400	47686.0	12027396.00	852906.29	1292143.55		
Borrowings	400	2.0	1691827.0	51514.33	147160.26		

Wage Bills	400	1289.0	183809.0	11991.01	19325.68
Spread	400	0.0	443313.0	26146.32	44157.92
Other Income	400	522.0	160348.0	10831.73	18991.88
(All variables are measured in Million Indian Rupees.)					

Table 4 : DE	Fable 4 : DEA Efficiency Scores (%)																
YEAR DMUs	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Number of Efficient
State Bank	95.4	100	83.8	80.6	87.3	81.9	83.6	88	100	94.6	100	100	100	100	100	100	8
State Bank	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	16
State Bank	100	100	100	100	100	100	100	85.8	89.9	100	100	95.9	100	100	100	100	13
State Bank	100	100	100	100	100	100	100	100	100	100	100	90.5	100	100	89.5	100	14
State Bank	100	100	100	100	100	100	100	100	94.7	89.5	100	91.8	99.5	100	96.9	93	10
State Bank	100	100	100	100	95	100	100	100	100	100	98.5	100	100	89.9	93.5	94.6	11
Allahabad	100	100	100	95.9	100	100	100	100	100	100	98.2	100	100	94.2	95.8	88.7	11
Andhra	85.5	84	91.2	81.1	90.8	100	100	100	92	98.8	100	93.4	100	100	100	98.7	7
Bank of	78.8	91.4	85.3	83.2	77.2	89.2	93.7	88.6	84.1	90	89.9	94.5	91.8	94.9	100	100	2
Bank of	79.3	83.2	76.3	80.5	89.2	94.1	88.7	72.7	86	95.4	98.3	100	88.9	82.8	91	95.7	1
Bank of	85.9	88.9	95.2	100	100	93.2	81.4	75.8	96.5	100	100	99.3	95.6	89.4	97.8	95.2	4
Canara	88.1	94.9	82	84.2	100	100	100	100	100	91.3	100	87.2	100	96.9	100	85.7	8
Central Dark of	90.4	84.6	74.7	75.2	94.3	100	100	100	100	100	100	78.7	94.8	84.9	77.4	74.1	6
Corporation	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	16
Dena Bank	93.4	87.3	74.8	69.5	95.6	100	100	84.1	100	100	100	100	100	100	96.7	93.7	8
Indian Bank	59.9	60.6	62.1	67.4	82.7	79	96.2	88.6	89.6	100	100	100	100	100	100	100	7
Indian	71.9	82.2	100	100	100	100	100	100	100	100	100	98.9	87.4	86.1	85	88.2	9
Oriental Dark of	95.5	100	100	100	100	100	100	100	100	100	99.6	100	100	100	100	100	14
Punjab	100	100	84.6	88.2	95.2	100	100	87.7	93.1	100	100	100	100	100	99	100	10
Punjab and	75.4	81.4	75.3	88.2	89.5	100	100	100	100	100	94.1	91.1	90.5	78.7	66.6	79.8	5
Syndicate	96.5	100	100	100	100	100	98.3	91.8	99.9	96.7	91.5	93.2	97.2	100	100	96.2	7
UCO Bank	55.3	62.6	67.4	67.2	82.9	86.1	90.3	78.4	90	94	95.6	91.4	89.6	99.5	89.3	100	1
Union Bank	88.8	100	58.6	84	100	94.9	87.8	87.2	100	100	100	100	100	89.7	100	96.4	8
United Daris	71.5	59.1	52.4	56.1	76.3	96.3	100	100	97.4	88.6	69	76.4	100	89.2	92	100	4
Vijaya	68.9	76.5	87.2	88.6	95.5	94.9	100	100	100	100	89.4	99.4	99.9	85.7	78.9	74.7	4
Total No. of Observations = 400; Efficient = 204 ; Inefficient = 196																	

Table	Table 5 : Average Annual Changes in TFP, Efficiency and Technical Efficiency of						
DMU	DMUs	TFPCH	ECH	ТСН			
1	State Bank of India	1.023546	0.996863	1.026749			
2	State Bank of Bikaner and Jaipur	1.02502	1	1.02502			
3	State Bank of Hyderabad	1.012457	0.999953	1.01238			
4	State Bank of Mysore	1.019448	0.999983	1.019478			
5	State Bank of Patiala	1.025155	1.004858	1.02016			
6	State Bank of Travancore	1.012633	1.003839	1.008757			
7	Allahabad Bank	1.071444	1.008024	1.062966			
8	Andhra Bank	1.012455	0.990429	1.022039			
9	Bank of Baroda	1.008336	0.984391	1.024633			
10	Bank of India	0.996524	0.987436	1.009203			
11	Bank of Maharashtra	1.026028	0.993163	1.032957			
12	Canara Bank	1.11351	1.001891	1.111482			
13	Central Bank of India	1.026666	1.013373	1.013053			
14	Corporation Bank	0.995872	1	0.996434			
15	Dena Bank	1.176136	0.999873	1.1762			
16	Indian Bank	0.993501	0.96631	1.028004			
17	Indian Overseas Bank	0.992851	0.986533	1.006571			
18	Oriental Bank of Commerce	1.033275	0.996934	1.036451			
19	Punjab National Bank	1.028605	1.000001	1.028629			
20	Punjab and Sind Bank	1.068782	0.9961	1.072766			
21	Syndicate Bank	1.035742	1.000405	1.035484			
22	UCO Bank	0.97865	0.961367	1.018124			
23	Union Bank of India	1.021955	0.994439	1.027589			
24	United Bank of India	1.010761	0.977845	1.033687			
25	Vijaya Bank	1.027924	0.994605	1.033539			

Table 6: Cluster means						
Clusters	TFPCH	ТСН	ECH			
C1	1.176136	0.9998730	1.176200			
C2	1.025485	0.9987544	1.026762			
C3	1.084579	1.0020050	1.082405			

C4	0.997812	0.9724782	1.026112
C5	1.002067	0.9955522	1.006669

Fig 1: Two-Dimensional Dendrogram showing partitioning and genealogy of clusters

Fig 2: Two-Dimensional representation of K-means clustering results

Table 7: Identification of Benchmarks				
Cluster	DMU Id	No. of years with DEA 'efficient'	Benchmark	
		Status (out of 16)		
C1	15	8	DMU 7	
	1	8		
	2	16		
	4	14		
	5	10		
	8	7		
C2	11	4	DMU 2	
	13	6		

	18	14		
	19	10	-	
	21	7		
	23	8	-	
	25	4	-	
	7	11		
C3	12	8	DMU 7	
	20	5	-	
	9	2		
C4	16	7	DMU 16	
	22	1	-	
	24	4		
	3	13		
	6	11		
C5	10	1	DMU 14	
	14	16		
	17	9		
Source: Authors' own calculations				